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The declared goal of this paper is to fill this gap: “… cognitive systems 
research  needs  questions  or  challenges  that  define  progress.  The  challenges  are  
not (yet more) predictions of the future, but a guideline to what are the aims 
and what would constitute progress.” – the quotation being from the project 
description of EUCogII, the project for the European Network for Cognitive 
Systems within which this formulation of the ‘challenges’ was originally devel-
oped (http://www.eucognition.org). So, we stick out our neck and formulate the 
challenges  for  artificial  cognitive  systems.  These  challenges  are  articulated  in  
terms  of  a  definition  of  what  a  cognitive  system  is:  a  system  that  learns  from  
experience and uses its acquired knowledge (both declarative and practical) in 
a  flexible  manner  to  achieve  its  own  goals.
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1. Introduction

On the grounds of the three intense workshops organized as part of the 
EuCogII project (Cortona 2009, Rapperswil 2011, Oxford 2012), of the 
invited talks to the plenary meetings of the network, and of our own 
research  and  vision  of  the  field,  we  have  finally  produced  the  present  docu-
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ment as an effort to put forward in a clear manner a set of interrelated chal-
lenges  for  artificial  cognitive  systems,  as  well  as  operative  ways  to  measure  
progress. We have come to the conclusion that a list of independent chal-
lenges would be senseless, because the potential challenges in such a list 
would be variously interlinked, in several respects. We have also tried to 
present the challenges in a theory- or approach-neutral way, while at the 
same  time  formulated  in  a  way  recognizable  by  the  field  itself.  This  is  not  
a naive contention; of course, our understanding of the challenges owes to 
current theoretical views, so they are clearly not theory-independent. It is 
just that we have tried not to take sides right from the start among the dif-
ferent research programmes currently active, but made an effort instead of 
fostering a common ground regarding the problems that all current theoreti-
cal approaches have to recognize, as well as about what is to count as prog-
ress for any of them.

If this document is to be of any use, then, it must capture the background 
self-understanding  of  the  field,  to  drive  it  in  a  direction  of  progress,  rather  
than “imposing” a set of tasks, or appear as a partisan manifest. That’s why 
bibliographical  references  have  been  kept  to  a  significant  minimum  –  it  is  
impossible  to  do  justice  to  such  a  multidisciplinary  field  without  producing  
a list of references much longer than the paper itself.  The challenges should 
be acknowledged by everybody, as well as the different strategies available 
at this moment to tackle them.

In addition, we have tried to formulate them in ways that allow for mea-
surable  progress,  in  a  set  of  well-defined  milestones,  of  increasing  achieve-
ment. However, our measures of progress do not consist in “competition-
like” challenges, where winning is not a guarantee of real progress. It 
is theoretical progress that it is looked for, rather than technical; hence, 
progress must be measured in terms of degrees of complexity, or degrees of 
novelty,  or  degrees  of  flexibility  –  that  is,  degrees  of  progress  that  can  only  
be achieved by theoretical progress. We are aware that this may also sound 
naive,  but  we  feel  confident  that  if  we  succeed  at  the  task  of  characterizing  
the  critical  issues  in  the  field,  ways  to  measure  progress  can  follow  through  
as well.
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2.  The  task  of  formulating  the  challenges  and  how  to  approach  it

Several possible ways to address our goal are to be avoided, in our view:

a)  As a remake of Hilbert’s formalist program for mathematics (or the 
more recent DARPA 23 challenges for the same discipline); that is, 
as a list of loosely related problems, so that it is possible to work on 
one, disregarding the others; 

   →  in  the  case  of  cognition,  an  integrated  approach  is  required.
b)  As it is standard in AI-Robotics: in the form of  “grand challenges” 

(like DARPA’s driverless vehicles or RoboCup). In these cases, what 
matters is task success, not advancing in the understanding of how 
such tasks can be solved;        

     →  successful  solutions  do  not  necessarily  advance  our  understanding  
of cognition, because they may rely on “design to the test”, i.e. task-
specific  “tricks”.

c)  As an internal agenda for a theoretical approach to cognition
     →  the  proposed  challenges  may  not  be  recognized  as  such  by  other  
approaches  within  the  field.

Our goal, accordingly, is to provide a conceptual map of related issues, in a 
non-partisan way, that can provide orientation regarding what it is already 
achieved, what’s next, how issues relate to one another – and to do so pro-
viding milestones, scalable dimensions of progress, which are not bound to 
be  dead  alleys,  the  myopic  fine-tuning  of  strategies  that  lack  generality.  To  
this extent, we need to avoid the assumption that it is just human-inspired, 
or  human-like,  artificial  systems  that  matter;;  even  if  understanding  human  
cognitive systems may be an outstanding goal, given the central interest in 
interaction  between  humans  and  artificial  systems,  models  and  simulations  
can also target other kinds of natural cognitive systems; but even when the 
focus is human cognition, there is no need to restrict the goal of the arti-
ficial cognitive systems to humanoid robots; morphological resemblance 
is  not  required  for  cognitive  interaction  between  natural  and  artificial  sys-
tems. Bio-inspired approaches are welcome, as a way to take advantage of 
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the fruitfulness of collaboration with the cognitive sciences in general, but 
“human-centrism” is to be avoided as the only approach. Finally, we will try 
to specify the challenges, not against the best practices/research programs 
on offer, but taking advantage of them to provide a common plan and 
vision,  a  consensus  on  what  should  be  done  first,  and  what  counts  as  suc-
cess, given our current understanding of the issues. For this reason, we start 
with a general characterization of what a cognitive system is, and then pro-
ceed next, to articulate the interrelated topics that constitute the challenges 
were  theoretical  progress  is  required  in  terms  of  this  definition,  which  pro-
vides a clear structure. 

3.  What  is  a  cognitive  system  –  can  there  be  artificial  ones?

The way this question is answered, it seems to us, is critical to the speci-
fication of challenges. At this basic starting point a critical split can be 
found in the field, between those researchers who take for granted that, 
while embodiment is required, cognition still can be thought as computa-
tion (Clark, 1998, 2011), on the one hand; and those who inspired by the 
Artificial  Life  approach  (Steels,  1994)  and  enactivism  (Varela,  Thompson  
& Rosch, 1993), establish a stronger connection between life and cognition, 
and view cognition as an adaptation (Stewart, Gapenne & di Paolo, 2010).
In  order  to  avoid  getting  stuck  at  this  starting  point,  we  propose  a  defini-

tion of cognitive system that is not committed to a particular, biological, 
implementation, and hence, allows for diversity. Our option also departs 
from the rather frequent attempt to define a rigid hierarchy of orders of 
complexity for cognitive systems (such as from reactive to deliberative 
ones, for example, along the vision proposed by (Maynard-Smith & Sza-
thmary, 1997)); this strategy is reminiscent of nineteenth century’s view of 
living being along the “scale of being”, whose peak was occupied by “Man”. 
Cognition may be a “major transition” in evolution, but a transition that 
is characterized by a huge diversity of strategies, of ways of being cogni-
tive;;  the  same  applies  for  artificial  systems  (Hebb,  2001).  What  needs  to  be  
well  defined  is  what  this  “cognitive”  transition  consists  in.  We  submit  that  a  
cognitive system is one that learns from individual experience and uses this 
knowledge  in  a  flexible  manner  to  achieve  its  goals.
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Notice the three elements in the definition: “learning from individual 
experience”, “flexible deployment of such knowledge”, and “autonomy” 
(own goals). A cognitive system is one that it is able to guide its behavior on 
the  knowledge  it  is  able  to  obtain:  it  is  in  this  way  that  it  can  exhibit  flex-
ibility. Systems that come fully equipped with knowledge, or which are not 
able  to  gain  knowledge  out  of  their  experience,  or  are  not  able  to  flexibly  
use such knowledge in their behavior; or which do not have own goals, are 
not be counted as cognitive, on this definition. Note that “knowledge” is 
meant to capture explicit declarative knowledge, but also practical, implicit, 
knowledge, as well as abilities and skills. 

Of course, this is not an innocent or ecumenical notion – as a cursory 
attention to the debate on ‘minimal cognition’ would show (van Duij, Kei-
jzer  &  Franken,  2006).  But  we  find  it  justified  in  that  it  captures  the  central  
cases any approach to cognitive systems have to be able to account for. Of 
course,  this  definition  involves  borderline  cases,  for  which  it  may  be  diffi-
cult (or impossible) to decide whether or not they are “really” cognitive, but 
this  fuzziness  is  going  to  appear  with  any  definition.  What  makes  this  defi-
nition  a  reasonable  one,  in  our  view,  is  that  it  definitely  focuses  on  the  cen-
tral cases. In addition, it provides a useful guidance to sort out some of the 
recurring  debates  that  stem  from  other  definitions  on  offer.  Thus,  it  avoids  
considering  all  living  beings  as  cognitive  (reactive,  reflex-like  systems  do  
not qualify). It also avoids eliminating the possibility of non-living or arti-
ficial  cognitive  beings  from  the  start,  which  would  be  question  begging.  On  
the other hand, it allows for non-individual learning – or more precisely, 
it does not rule out evolution as a learning process at the supra-individual 
level, a learning process that gets expressed in the morphology of the being 
(Maturana & Varela, 1997; Pfeiffer & Bongard, 2006), but it emphasizes 
the connection between the learning experience and the flexible use of 
the  knowledge  (thus,  adaptation  per  se  does  not  guarantee  flexible  use  of  
knowledge; therefore, morphology by itself, even if it is the outcome of an 
evolutionary process of adaptation, does not qualify as knowledge in the 
relevant sense for cognition). It also leaves space for cultural learning that 
is transferred to the individual agent in their individual learning experience. 
On the other hand, it requires more than a syntactical notion of computa-
tion for cognition (Fodor, 2010; Anderson, 2003): it requires that what the 
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individual learns is meaningful to the individual, relative to its own goals (di 
Paolo, 2005).
The  different  aspects  of  this  definition  provide  the  ground  for  the  repre-

sentation of the challenges we propose. Advancement is required in how to 
account for learning from experience; how knowledge is acquired, stored 
and  accessed;;  how  cognitive  systems  can  use  it  flexibly;;  and  how  they  can  
have their own goals; but all of them have to be considered in an integrated 
way. 

4.  Dealing  with  an  uncertain  world

Natural cognitive beings constitute a way to deal with an uncertain world. 
This is diametrically opposed to the most common biological strategy: to 
adapt to just a robust subset of environmental parameters in a rigid manner; 
or to behave so as to make such parameters rigid or constant; cognitive sys-
tems exploit the information available in the environment to adapt in such 
a way that their behavior is not just dependent upon the current circum-
stances, but also upon the previous experience. This suggests a relational 
understanding of world as what’s relevant for the system (as the old notion 
of “Umwelt” proposed by von Uexküll): those parameters that may be rel-
evant to our goals. By learning, cognitive systems try to discover the regu-
larities, constancies, and contingencies that are robust enough to provide 
such  guidance.  Learning,  though,  should  not  be  seen  anymore  as  a  passive  
recording of regularities, as the old empiricism held (Prinz, 2004; Gomila, 
2008), but as an active exploration, just like the role of infant active move-
ment is critical in motor development (Gibson, 1979; Thelen & Smith, 
1994). In addition, given the relevance of relational contingencies, the mate-
rials systems are made of become important. 

Talking of an “uncertain world” avoids the ambiguity involved in the 
alternative notion of “unpredictability”, which can be applied both to the 
world and to the behavior of the system. The notion, though, has to be 
understood as an epistemic, rather than ontological, one. An uncertain world 
need not be a noisy, or chaotic, one; just a complex one, that may pose dif-
ficulties  to  a  system  to  anticipate  or  make  sense  of  what’s  going  on.  On  the  
other hand, a cognitive system contributes to the world complexity through 
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its own complex behavior: as long as it behaves in ways that are not predict-
able  just  from  the  specified  information  about  its  structure,  rules,  or  inputs,  
it contributes to the world’s complexity.

              
Measures of progress: 
 1)  Better systems are those able to deal with increasing degrees of 

world uncertainty -while allowing for increasing environmental 
variability (in lighting conditions, distances, sizes, time constraints, 
....).

 2)  The jump from “virtual” to real environments also counts as prog-
ress.

 3)  In the same vein, systems able to work in different environments 
(different media: water, air, ...; times: day, nights, ...; different 
physical parameters: high and low temperatures, different lighting 
conditions, pressure, oxigen, ...).

 4)  When moving from “generational” ways of changing the system 
(as in genetic algorithms) to “tune up” with relevant patterns of 
information, to individual development of practical skills, of “ways 
doing  things”  in  a  proficient  manner,  through  practice;;  both  take  
time, but the time-scale is different: generational vs individual.

 5)  If the system may deal with “social” patterns of information; the 
idea here is that a social environment is even more complex and 
demanding.

 6)  In general, a motivated account of the “initial state” of the system, 
plus self-organizational development, is required –rather than 
“ad hoc” assumptions to make the system work; advances in this 
direction also welcome.

 7)  Exploration of the properties of new materials, sensors, actua-
tors,... as a way to further explore the environmental “affordances”. 

5.  Learning  from  experience

This is probably the area where most efforts have been dedicated. There are 
a multiplicity of techniques and algorithms (broadly, the machine learning 
area; for an introduction, (Murphy, 2012)) that try to account for this basic 
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cognitive ability. However, these algorithms are generally “information-
intensive”.  Bio-inspired  approaches  to  learning  try  to  find  inspiration  in  the  
more economical ways natural cognitive systems learn, such as reinforce-
ment learning (Sutton & Barto, 1998), Hebbian learning (Sporns, 2010), 
dynamic context adaptation (Faubel & Schöner, 2008); while the AI-in-
spired approaches try to model learning by explicit abstraction (Holyoak, 
Gentner & Kokinov, 2001). In general, all of these approaches work with 
abstract data sets, rather than with real environments, and assume a passive 
view of the system (which is conceived as computational). This seems far 
from the way natural cognitive systems learn from experience: in an active, 
situated,  way;;  by  exploring  the  world;;  and  by  reconfiguring  one’s  own  skills  
and capabilities. On the other hand, the standard strategy of “annotated” 
data sets can be seen as a form of social learning, but again passive rather 
than active.

Measures of progress:
   8)  Systems have to discover environmental patterns, rather than just 

exhibit forms of non-associative learning, such as habituation or 
accomodation, which involve some sort of adaptive reaction, but 
do  not  provide  the  system  with  knowledge  to  flexibly  deploy  in  
behavior.

   9)  Internal states are to function as informational holders of those 
informational patterns (the effort here is to by-pass a priori 
debates over representations and how to conceive of them), that 
can guide behavior. This “common-coding” requirement -that 
input information is code in a way that can directly guide behav-
ior- relates to Bernstein’s problem, the problem of finding the 
optimal way to move the body/actuators, given a goal (see Bern-
stein 1967). Because just as there is a problem of combinatorial 
explosion -the frame problem- for classical AI systems, a risk of 
combinatorial explosion of degrees of freedom for actuators also 
appears (Iida, Gómez & Pfeiffer, 2005). The more promising way 
to block these combinatorial explosion problems is by getting 
the  system  configured  via  its  active  exploration  of  the  environ-
ment  (the  perception-action  loop).  This  criterion  is  more  difficult  
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to view as scalar, it looks more like an architectural requirement 
for progress, and it may also involve a further developmental 
constraint: that the system itself gets build in interaction with the 
environment.  

   10)    Further,  finding  structure  in  one’s  experience:  the  recognition  of  
meaningful  patterns  by  recoding,  by  finding  higher-level  invari-
ants in these informational patterns, sensorimotor loops (Turvey 
& Carello, 1986).

 11)  Finding analogies across domains; that is, relational similarities, 
rather  than  just  superficial  (sensory)  similarities  (Gentner,  2003).

6.  How  to  understand  knowledge

Knowledge is the outcome of learning, is what the systems gets when it 
learns. The current challenge clearly stems from the classical problem of 
knowledge representation. Classical AI got stuck with the idea of explicit, 
formal logic-like, propositional representations, and the conception of rea-
soning as a kind of theorem-proving by transforming those propositional 
data structures. Together with the aim to formalize expert (or common 
sense) knowledge, it could not solve the frame problem, the grounding 
problem, the common-coding problem, etc. … New approaches drive atten-
tion to practical, embodied, context-dependent, implicit, knowledge skills. 
But it is not clear yet how this new approach can be carried out (Gomila & 
Calvo,  2008):  how  knowledge  is  codified,  implemented,  or  stored  (for  how  
it is accessed, see next section). Success of machine learning methods for 
classification  tasks  (via  pattern  recognition)  provide  a  route  to  explore,  but  
it has to get more realistic. Another promising approach is brain-inspired 
dynamical models – which develop the idea that knowledge is in the topol-
ogy of a network of processing units, plus its coupling to body and envi-
ronment (Johnson, Spencer & Schöner, 2008). Other approaches are also 
currently active. In what follows, we try to provide criteria of promising 
advances that will count in favour of the techniques that are able to achieve 
them.
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Measures of progress: 
 12)  Advances from pattern recognition in the input data (data-mining 

style)  to  finding  relational  laws  (constancies,  affordances)  in  the  
environment.

 13)  Advances in multisensory integration, rather than just sensor 
fusion; sensory-motor contingencies taking different sensors into 
account, for different environmental dimensions (visual –spatial, 
auditory –temporal, ...), plus proprioceptive information as dis-
ambiguating.

 14)  Brain-inspired networks of control (relative to each kind of brain, 
and each kind of body), for sensory-motor coordination in differ-
ent tasks: need to go beyond navigation; in particular: a metrics 
for increasing the repertoire of behaviors available to the system, 
related to the informational patterns the system is capable to 
grasp.

 15)  Development, out of this basic, relational, understanding, of a 
detached, abstract, view of the world (objective knowledge). 
Psychology  teaches  that  flexible  knowledge  requires  some  form  
of recoding, which is the key to abstraction, to make it adequate 
to novel, not exactly identical, situations. It can be said the neural 
networks (specially in their sophisticated forms) account for such 
abstract recoding, but this is not fully satisfactory, because there 
is just one network in the model; a different approach is to use 
layers of neural networks, where the higher level takes as inputs 
the patterns of the lower, sensory, layers (Sun, 2006), but up to 
now this is done “by hand”. Still another approach, of Vygotskian 
inspiration, views in the use of public symbols the key to under-
stand cognitive, abstract recoding (Gomila, 2012), but the appli-
cation  of  this  approach  within  artificial  cognitive  systems  is   just  
beginning.      

7.  Flexible  use  of  knowledge

Extracting world regularities and contingencies would be useless unless 
such knowledge can guide future action in real-time in an uncertain envi-
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ronment. This may require in the end, as anticipated above, behavioral 
unpredictability, which is a property than runs contrary to the technical 
requirements of robustness and reliability for artificial systems (to guar-
antee safety, as the principal engineer’s command). The critical issue for 
flexibility is related to how the knowledge is “stored” (see previous sec-
tion), and therefore, how it is accessed. The major roadblock to carry this 
out – regardless of approach – is again combinatorial explosion, whether at 
the level of propositional representations, as in classical AI, or at the level 
of degrees of freedom for the control of actuators. But it is also a problem 
to “judge”, in a given situation, which one is the best one to categorize it, 
given what the system knows.

Different strategies are actively explored as ways to reduce/constrain 
combinatorial explosion of any kind; it is not possible to establish a clear set 
of milestones at this point; we would like to suggest the need for explora-
tion of new ideas (different programs may be not incompatible in the end, 
convergences may emerge). 

Measures of progress: 
 16)  Simplifying the requirements for cognitive control (context-

sensitivity of the “decision” process, distributed adaptive control 
architectures,  potential  conflicts  adjudicated  through  accessibil-
ity, timing) goes in the right direction.

 17)  Making the controller change in a stochastic way and select the 
variations that work better (genetic algorithms) has a clear draw-
back:  no  individual  learning,  no  flexible  deployment  of  knowl-
edge; progress requires the integration of interaction with the 
environment, the learning process and the knowledge acquisition 
and  its  flexible  deployment.

 18)  Dynamicist approaches (such as the “dynamic field approach”, 
(Johnson, Spencer & Schöner, 2008)), which look for system 
criticalities  in  the  state  space,  and  resort  to  force  field  metaphors  
of distributed activation, hold a potential to advance on a control 
architecture which is not homuncular, which is not committed to 
a “central executive”, whose powers remain mysterious: control 
emerges  out  of  a  distributed  field  of  activation.
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 19)  Exploiting the body (sensors and actuators), and their dynamic 
loops, is also a promising way to constraint the explosion of 
combinatorial options, both at the representational and behav-
ioral control ends (Philipona, O’Regan, & Nadal, 2003).

 20)  Advances in “schematization” of sensory-motor contingencies, 
as a simple way of recoding (in fact, a form of abstraction) also 
count as progress.

 21)  The use of heuristics (“fast and frugal”, non foul-proof, context-
sensitive, procedures; Gigerenzer, Hertwig, & Pachur, 2011), 
instead of algorithms, also provides a way to avoid combinatorial 
explosion of algorithmic processes, but it requires some form of 
adjudication, to determine which one gets in charge (again, the 
activation metaphor provides a way to deal with this problem).

 22)  Emotions can also provide a path for progress, in their role as 
quick valuations or assessment of situations, on simple hints, 
from the point of view of the system. Brain-inspired models 
of the reward system, of the amygdala; reinforcement-based 
expected reward, rather than calculation of expected utility, are 
strategies which could make progress in this regard (Sutton & 
Barto, 1997).

8.  Autonomy

Autonomy is related to agency, and agency to having own goals. It requires 
internal motivation, and a sense of value “for the system”. It also requires 
some kind of “self-monitoring”: an internal grasp of one’s cognitive activ-
ity is required to make possible the “internal error detection” (Bickhardt, 
2008), as the central cognitive capacity of self-monitoring – involving both 
whether the behavior matches the relevant intention, and whether it is car-
ried out as intended.

In systems like us, this property is achieved by a double control architec-
ture: the autonomous nervous system (including the endocrine one), plus 
the central nervous system; both systems are also interrelated. In general, a 
cognitive  system  involves  a  basic  regulatory  system  that  implicitly  defines  
the needs and requirements, the motivations and homeostatic goals of the 
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system, for which internal sensory feedback is required to keep the system 
within the range of vital parameters. In addition, a central system allows 
for more sophisticated forms of environmental coupling, for informational 
management, for memory and learning, and for control contingent on such 
previous experience. A full-blown agent, from this point of view, is one, 
which is capable to generate new behavior appropiate to new circumstances 
(which seems impredictible just given the situation); it requires self-orga-
nization, a homeostatic relationship with the environment of self-sustained 
processes (di Paolo, 2005; Moreno & Etxebarria, 2006) - something still 
very far from current technology. It may also require the ability to “work 
off-line”, to recombine previous experiences, and to test in the imagination 
the new options (Grush, 2004). Autonomy comes in degrees and it is a nec-
essary feature of systems that can deal with the real world (Müller, 2012).

Measures of progress: 
 23)  When programming of all possibilities (look and search strategy 

in the problem space) is no longer the basic strategy; progress 
requires  to  let  the  artificial  system  “go  beyond”  the  programmed,  
to modify itself, to choose among several options, to choose 
which knowledge to use, … according to the contingencies of its 
individual experience.

 24)  From systems with externally imposed goals in a non-previously 
specified  manner  in  a  previously  specified  environment  (simpli-
fied,  virtual);;  to  similar  systems  able  to  deal  with  non-previously  
specified environments; from systems that can choose among 
several pre-specified goals according to circumstances, to sys-
tems that can develop new goals; from systems that can modify/
change themselves according to circumstances to systems able to 
solve  internal  motivational  conflicts  (change  goals).

 25)  From “simple” systems, whose behavior depend upon a few 
parameters, to more “complex” ones –by increasing the number 
of parameters, and letting them to interact non-linearly, complex-
ity follows.
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9.  Social  cognitive  systems  

Social cognitive systems address this learning process in a facilitated way, 
by  starting  in  a  simplified,  structured  environment;;  by  receiving  feedback  
and scaffolding from others; by using others as models (Steels, 2011).
Of  course,  this  creates  a  specific  problem  of  social  learning:  to  find  out  in  

the  first  place  which  parts  of  one’s  world  are  other  cognitive  systems,  and  
to discover the regularities, constancies, and contingencies, that are relevant 
in this area. All this is especially relevant for the area of interaction among 
cognitive  beings,  both  natural  and  artificial.

It has also become clear that increasing autonomy in the interaction 
between  natural  and  artificial  systems  requires  some  kind  of  “moral  con-
trol”; the attempt to guarantee that the interaction doesn’t turn against the 
human (Arkin, 2007; Wallach & Allen, 2009).

Measures of progress: 
 26)  Systems able to interact with other systems in increasingly com-

plex ways -from simple synchronization, to imitation, to emula-
tion, to cooperation, to joint action (Knoblich & Sebald, 2008).

 27)  Systems able to develop “common worlds”, a common under-
standing of how things go (share knowledge, distribute tasks 
according to abilities, …)

 28)  Increasing “mental” abilities – which cannot be dissociated from 
artificial systems abilities (to recognize “sadness” or “rage” in 
a  human  the  artificial  system  is  required  to  be  able  to  “express”  
emotional states (Vallverdú & Casacuberta, 2009; progress in 
this area involves not just facial mimicry, but understanding of 
emotional states as expressed, and simulation of such expression 
process.

 29)  In fact, this emotional capacity constitutes the ground level of 
our moral understanding (Damasio, 1997; Greene et al., 2001), 
and this suggest that progress in this regard involves modelling 
moral emotions (Gomila & Amengual, 2009).

   30)    Proficiency  in  pragmatic  linguistic  interaction  in  naturalistic  con-
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texts, as a way to interact, coordinate and cooperate (Tikhanoff, 
Cangelosi & Metta, 2011).

10.  Conclusion

As intended progress in one challenge is not independent on progress on 
many others – the typical property of cognition is an integration of capa-
bilities and elements. It is not possible, though, to establish milestones at 
this global level, because of the intrinsic diversity of cognitive beings. What 
it does seem advisable at this point is to emphasize integrated systems over 
specialized algorithms. Classical AI has worked under the assumption of 
modularity, as engineering in general: the goal is to add new facilities to a 
system without having to re-design it anew. There is reason to doubt this 
assumption is going to work for cognitive systems – the scaling problem is 
a serious one. New capabilities may require some sort of reorganization, in 
non-principled  ways.  Hence,  a  final,  global,  challenge,  concerns  this  prob-
lem  of  scaling-up  cognitive  systems  –which  may  induce  a  vision  of  the  field  
of  artificial  cognitive  systems  itself  as  following  an  evolutionary  trajectory,  
hopefully  one  of  increasing  fitness.  
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